УДК: 621.373.8

МОДЕЛЬ ОЦЕНИВАНИЯ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ТВЕРДОТЕЛЬНОГО ЛАЗЕРА ПРИ ПИРОТЕХНИЧЕСКОЙ НАКАЧКЕ АКТИВНОЙ СРЕДЫ

MODEL OF ESTIMATING OF SOLID-STATE LASER ENERGY CHARACTERISTICS DURING PYROTECHNIC PUMPING OF THE ACTIVE ENVIRONMENT

По представлению академика РАРАН В.А. Петрова

В.Е. Поляков, В.В. Широбоков, А.В. Емельянов, О.В. Карпеко

ВКА им. А.Ф. Можайского

V.E. Polyakov, V.V. Shirobokov, A.V. Emelyanov, O.V. Karpeko

В статье предложены обобщенные конструкторско-технологические и оптические концепции изготовления нового класса лазеров с высокоэнергетической широкополосной пиротехнической оптической накачкой, а также разработана модель, которая позволяет оценить энергетические характеристики предлагаемых лазеров и является основой для дальнейшего повышения технологического уровня развития компонентной базы лазерных устройств специального назначения.

Ключевые слова: лазеры, пиротехническая накачка, кристалл александрита, пиротехническая лампа накачки.

In this article generalized design, technological and optical concepts of creation a new class of lasers with high-energy broadband pyrotechnic optical pumping are offered. Model of estimating of solid-state lasers energy characteristics is designed. This model is the basis for further of improving the technological level of development of the component base of special purpose lasers.

Keywords: lasers, pyrotechnic pumping, crystal of alexandrite, pyrotechnic pumping lamp.

Лазеры нашли широкое применение практически во всех отраслях деятельности человека: промышленности, медицине, связи и информационных технологиях, а также в военной сфере (локация, связь, навигация и т.д.) [1]. В зависимости от типов решаемых специальных задач в каждой из этих областей используют различные типы лазеров. Основными характеристиками лазеров являются рабочая длина волны, источники накачки, а также типы активных сред. Актуальной, в частности, является задача изучения различных способов накачки активных сред для повышения эффективности применения лазеров. При решении специальных задач в военной сфере зачастую приходится сталкиваться с разрешением противоречия между необходимостью получения требуемой выходной мощности лазерного излучения и невозможностью её обеспечения ввиду отсутствия в непосредственной близости электрической сети. Зависимость основных характеристик лазерных модулей от наличия доступной сети питания большой мощности ведёт к недостаточной мобильности средств вооружения на их основе.

Одним из возможных способов решения указанного противоречия может быть применение лазерных систем с малыми массогабаритны-

И

ми характеристиками на основе твердотельных лазеров с использованием импульсной пиротехнической лампы для накачки активной среды. Такие пиротехнические лампы не требуют подключения к сети электропитания, поскольку в качестве источника электроэнергии используются процессы горения пиротехнических составов, что позволяет применять их без использования габаритных стационарных источников электрического питания, и, следовательно, повысить их мобильность [2].

Принимая во внимание сказанное, можно утверждать, что оценивание возможности организации пиротехнической накачки твердотельных лазеров, а также измерение энергетических характеристик такого лазера безусловно является актуальной задачей.

Оценка возможности использования процессов горения пиротехнических смесей для оптической накачки твердотельных лазеров

В качестве источников оптической накачки традиционно используются импульсные источники света: лампы, наполненные ксеноном, криптоном, парами щелочных металлов, газоразрядные лампы на основе Z-пинча, Q-пинча, с ударной волной, импульсные лампы с испаряющейся оболочкой, пиротехнические лампы [3]. Для всех видов импульсных ламп, за исключением пиротехнических, требуется электрическое питание от источников электрического тока.

Для поджига импульсной лампы используют мощный (ёмкостью 100-200 кВт/см³) электрический блок питания, что увеличивает габариты и массу лазера, а также расход потребляемой энергии. Использование для накачки активного лазерного элемента лучистой энергии от лампы-вспышки приводит к существенным потерям за счет преобразования электрической энергии в световую в самой импульсной лампе и в ее электрическом контуре. Активные элементы в лазерах с ламповой накачкой могут быть использованы в виде сплошных цилиндров или трубок, которые вместе с лампой располагаются в цилиндрическом или эллиптическом отражателе, а лампа дополнительно снабжена покрытием, отражающем УФ-часть спектра внутрь лампы.

Между лампой накачки и боковой поверхностью активного элемента расположена иммерсионная среда, например, тяжелая вода.

Излучаемая мощность и энергия импульсных ламп, используемых для накачки твердотельных лазеров, может быть рассчитана из уравнений:

$$P(t) = A \cdot t \cdot e^{-kt} \tag{1}$$

$$W=\int_0^\infty P(t)\,dt\,,$$

где параметры A и k определяются экспериментально. Из условия максимума P(t), измеренного по осциллограммам, можно определить $k = 1/\tau$, где τ — время достижения максимума, а нормировка позволяет вычислить параметр

$$A = k^2 \cdot W$$

где *W* — излучаемая энергия.

Тогда зависимость излучаемой энергии от времени, с учетом уравнения (1), может быть представлена в виде:

$$W(t) = -A \cdot k \cdot \left[t \cdot e^{-kt} + \frac{1}{k} (e^{-kt} - 1) \right].$$
(2)

Для импульсных ламп типа ИФП-1200 и ИФП-5000 при t = 300 мкс, $P = P_{\text{max}}$, тогда $k = 3,3\cdot103$ с⁻¹. Отсюда находим, что для лампы ИФП-1200 $A = 5,2\cdot10^9$ Дж/с², а для лампы ИФП-5000 $A = 5,45\cdot1010$ Дж/с², предполагая, что коэффициент полезного действия (КПД) при преобразовании электрической энергии в световую $\eta = 0,4$.

Если предположить, что разряд в лампе не шнуруется, а светится вся ее внутренняя поверхность, тогда из уравнения (1) для излучаемой мощности получаем:

$$P(t) = \varepsilon_{_{9\phi}} \cdot \sigma_{_0} \cdot S \cdot [T(t)]^4.$$
(3)

С учётом уравнений (1), (2) и (3) для температуры получим:

$$T(t) = \sqrt[4]{\frac{A \cdot t \cdot e^{-kt}}{\varepsilon_{_{3\phi}} \cdot \sigma_0 \cdot S}},$$
(4)

где P(t) — излучаемая мощность импульсной лампы; ε_{ab} — эффективная излучательная спо-

собность тела; σ_0 — постоянная Стефана-Больцмана; *S* — площадь излучающей поверхности; T(t) — зависимость температуры от времени; t — время.

Оценивая T для двух типов ламп накачки, если $\varepsilon_{_{3\Phi}} = 0.8$, получим $T_{_{max}} = 8300$ К для ИФП-1200 и $T_{_{max}} = 8870$ К, для ИФП-5000, что совпадает с известными данными.

Оптическая накачка активных лазерных сред (АЛС) с использованием традиционных ламп как непрерывного, так и импульсного действия представляется в настоящее время хорошо разработанным способом получения инверсной населенности, применяемых во многих типах лазеров. Список существующих электрических газонаполненных ламп достаточно широк и во многом удовлетворяет требованиям, предъявляемым к источникам оптической накачки (рис. 1). Дальнейшие разработки в этой области позволяют оптимизировать конструкции ламп и обеспечить их широкое применение при одновременном увеличении ресурса работы и снижении стоимости.

Неустранимым недостатком этих источников накачки в некоторых применениях служат присущие им массогабаритные характеристики. В промышленных лазерах получение энергии свободной генерации ~ 1 Дж в импульсных системах требует массы блока ~ 1 кг, что может ограничить спектр потенциального использования таких установок, тем более, что не ожидается ощутимого снижения указанного параметра на пути эволюции технических решений.

Возможность существенного снижения массогабаритных параметров следует искать, по-видимому, на пути применения принципиально других, не газоразрядных ламп. Одним из

Рис. 1. Общий вид квантрона и короткоимпульсных мощных ламп типа ИНК

таких типов ламп могут быть лампы, в которых светящимся телом являются горящие пиротехнические составы [4]. Благодаря большому запасу энергии, достигающему величины более 10 кДж/г, высокой температуре (более 5000 K) и скорости горения есть основания ожидать перспективности их использования в качестве источников накачки АЛС.

Первые применения пиротехнических составов состоялись уже достаточно давно [5, 6] и дали обнадеживающие результаты, показывающие их принципиальную пригодность. Вместе с тем, использование таких ламп для оптической накачки АЛС требует как дальнейшей проработки теоретических вопросов, так и поиска экспериментальных решений, которые лишь намечены в работах [5–7].

Экспериментальная часть

В опубликованной работе [8] по применению пиротехнической накачки активных лазерных сред использовался пиросостав, помещенный вместе с активной средой внутрь осветителя. Ресурс такой системы равен единице, однако положительным фактором являлось то, что пиросостав сгорал непосредственно вокруг лазерного элемента, и для накачки использовалось «самое горячее» излучение.

Для увеличения ресурса пиротехнической накачки в настоящей работе предлагается лампа, работу которой можно описать следующим образом: пиросостав сгорает в индивидуальной камере горения, а светящиеся продукты сгорания пролетают вдоль активного лазерного элемента. Приведение системы в исходное состояние осуществляется заменой заряда вне зоны осветителя или всей пиротехнической лампы. Метание факела продуктов сгорания пиросмеси в зону осветителя, содержащего активный лазерный элемент, осуществляется через прозрачную стеклянную трубку.

Как было показано [9], оптимальной температурой при процессах горения (окисления) Zr и Al, или их сплавов при разработке ламп накачки является температура 4800–5200 К.

Указанные химические реакции сопровождаются выделением как твердых продуктов сгорания (ZrO₂ и Al2O₃), так и газофазной составляющей реакции (KCl), которые при контакте со стенками осветителя (например, стеклянной трубкой лампы накачки) способны охлаждаться и конденсироваться в виде слоя (окалины) на поверхности осветителя.

Анализ пленки осевших продуктов сгорания (окиси циркония, алюминия и хлорида калия) показал, что она является непрозрачной для света в диапазоне 400÷1000 нм. Загрязнение поверхности осветителя происходит по мере распространения переднего фронта факела и в момент времени, когда длина факела становится равной (или большей) длине лазерного элемента. Вся поверхность осветителя оказывается покрыта окалиной, что приводит к значительным потерям энергии накачки, и практически всегда не удается достигнуть порога накачки. Для устранения загрязнения боковой поверхности осветителя (стеклянной трубки пиротехнической лампы накачки) были предложены технические решения, заключающиеся в следующем:

 предварительно из состава факела в расширительной камере отсекалась газовая составляющая продуктов сгорания (KCl);

 – диоксиды циркония (алюминия) пропускались через сопло Лаваля и направлялись в трубку осветителя, на боковую поверхность которой предварительно наносилось аблирующее покрытие, одновременно выполняющие функции термической и механической защиты зеркального (диффузного) отражателя.

Указанные технические предложения были реализованы при разработке пиротехнической лампы накачки, схема которой приведена на рис. 2.

Пиротехническая лампа содержит капсюль 1, предназначенный для поджига запала 2 при механическом воздействии на капсюль.

Запал в процессе сгорания образует большое количество горящих дисперсных металли-

Рис. 2. Функциональная схема пиротехнической лампы

ческих частиц, имеющих высокую температуру, что обеспечивает поджиг основного заряда 3, выполненного в виде цилиндрической шашки с бронированным каналом [9]. Поджиг основного заряда 3 осуществляется с помощью рассекателя 4, который представляет собой обратный конус и обеспечивает торцевое горение заряда. С противоположной стороны рассекателя 4 установлено сопло 5, имеющее критический диаметр $d_{\rm кр}$, выходящее в расширительную камеру 6 с объемом V_2 .

На противоположной стороне расширительной камеры 6 расположен отсекатель 7 с внутренним диаметром d₁, выступающий внутрь расширительной камеры. При этом, если V₁ объем основного заряда пиролампы 3, тогда необходимо обеспечить выполнение соотношения $V_2 / V_1 = 50 \div 100, d_{\text{kp}} / d_1 = 0.8 \div 0.9; h / d_{\text{kp}} = 2 \div 6,$ где *h* — длина выступа отсекателя в расширительную камеру, а расстояние между соплом и отсекателем должно быть равно 3÷10 d_{кр}. Указанные соотношения между объемом основного заряда пиролампы и объемом расширительной камеры (рис. 3), внутренними диаметрами сопла и отсекателя, а также расстояние между соплом и отсекателем и длиной отсекателя, обеспечивают полное осаждение газообразного компонента продукта сгорания пиротехнической смеси (KCl) в расширительной камере 6 и подавления эффекта задымленности стеклянной трубки 14 осветителя лазера. Пиротехническая лампа содержит также крышку корпуса лампы накачки 8, гайку 9, корпус лампы накачки 10, специальную гильзу 11, прокладку 12 и гайку 13. Все механические элементы лампы накачки изготавливаются из высокопрочного и термостойкого материала, например, из стали или медных сплавов.

В качестве специальной гильзы 11 можно использовать штатную гильзу от патрона, причем узел для поджига 1 может быть механическим или электрическим. Стеклянная трубка осветителя лазера 14 может быть дополнительно расположена в канале зеркального (диффузного) отражателя 15, при этом в другом канале отражателя располагается лазерный элемент, снабженный оптическим резонатором.

Пиротехническая лампа накачки работает следующим образом. С помощью устройства 1 поджигают запал 2. В случае электрического поджига на электровоспламенитель подается напряжение 1–3 В. Образующийся поток горящих частиц проходит через канал основного заряда 3 и попадает на обратный конус (рассекатель) 4, после чего происходит поджиг заряда 3, содержащего, например, смесь циркония и перхлората калия.

Продукты сгорания 2Zr+KClO₄→2ZrO₂+KCl представляют собой гетерофазную среду, содержащую как капли перегретой жидкости, так и твердые частицы, а также газофазные компоненты. Например, для диоксида циркония $T_{\rm nn} = 2677$ K, для хлорида калия $T_{\rm nn} = 1044$ K, $T_{\rm кип} = 1679$ K. Диоксид циркония и хлорид калия за счет давления, возникающего в корпусе лампы 10, истекают через сопло 5, критический диаметр которого d_{кр} обеспечивает формирование факела необходимых параметров. Выходя из сопла 5 факел, содержащий газообразную составляющую KCl и мелкодисперсные твердые частицы ZrO₂, попадает в расширительную камеру 6, имеющую объем V₂. В камере 6 газообразный KCl расширяется и осаждается на холодных стенках камеры. Струя мелкодисперсных частиц ZrO₂ (Al₂O₃) имеет малую расходимость и перемещается через отверстие в рассекателе 7, который дополнительно отсекает газообразную фракцию факела. На выходе отсекателя 7 факел содержит частицы диоксида циркония (оксида алюминия), которые направляются в канал осветителя лазера 14, выполненный в виде трубки, расположенной, например, в одном из фокусов эллиптического зеркального (диффузного) отражателя (на рисунке 2 не показан).

Для того, чтобы обеспечить равномерную, сравнимую с электрозарядными лампами, засветку активной лазерной среды, необходимо условие, чтобы время полета светящихся продук-

Рис. 3. График зависимости энергии пиролампы от массы заряда

тов вдоль всей ее длины составляло величину $\leq 1/2\tau_c$, где τ_c — время жизни верхнего рабочего уровня. Скорость звука в газе при температуре *T* может быть рассчитана из уравнения

$$V_{_{3\mathrm{B}}}=(\gamma RT)^{1/2},$$

где γ — показатель адиабаты; $R = R_0/\mu$ — газовая постоянная; μ — молекулярная масса; R_0 — универсальная газовая постоянная. Если принять $\gamma = 1,2$ (как для порохов) и учесть, что в газовой фазе после протекания реакции Zr с KClO₄ находится преимущественно хлористый калий ($\mu = 74 \cdot 10^{-3}$ кг/моль), тогда даже при T = 5200 K, скорость истечения продуктов сгорания ZrO₂ составляет 1000 м/с, что достигается в разработанной пиротехнической лампе за счет использования сопла Лаваля.

Результаты и их обсуждение

На рис. З приведены зависимости энергии одноканальной (кривая 1) и коаксиальной (кривая 2) пиролампы. Как видно, при массе заряда 1 г энергия одноканальной лампы составляет около 100 Дж при длительности вспышки $\tau = 5^{-10}$ нс. Для коаксиальной лампы при массе заряда 1 г энергия составляет величину 160 Дж при длительности $\tau = 5^{-10}$ с.

При указанных параметрах мощность излучения составляет величину порядка (2–5)·10⁴ Вт/см², что достаточно для накачки лазерных элементов на основе стекла, активированного ионами Nd³⁺. Зависимость мощности излучения пиролампы от массы заряда приведена на рис. 4.

Рис. 4. График зависимости мощности излучения пиролампы от массы заряда

Таблица

Температура горения и количество конденсированной фазы в зависимости от давления

Смесь	Р, атм	<i>T</i> , K	К _ф , %
Zr-57%, KClO ₄ -43%	100	4920	53
	1,00	4039	42
	0,01	3296	38

Для увеличения энергоотдачи от пиролампы необходимо стремиться конструктивным путем достигать максимально возможного давления в камере сгорания пиротехнического состава, поскольку с ростом давления (таблица) увеличивается температура горения и энергетическая светимость пиролампы пропорционально Т⁴ согласно закону Стефана-Больцмана.

Таким образом, экспериментальным путем были получены основные энергетические характеристики пиротехнической лампы накачки.

Заключение

В работе предложены обобщенные конструкторско-технологические и оптические концепции изготовления нового класса лазеров с высокоэнергетической широкополосной пиротехнической оптической накачкой, при которой не требуются габаритные и слабомобильные источники электрической энергии.

Предлагаемый тип лазеров, например, на кристалле александрита, может быть использован для определения дальности до объектов (импульсный, фазовый или фазово-импульсный методы) и дополнительно может содержать устройство, обеспечивающее передачу информации о дальности нуждающимся потребителям.

На основе предложенной модели разработан программно-алгоритмический комплекс для вычисления интеграла Планка, расчета спектральной эффективности, КПД пиротехнической накачки и энергетических характеристик твердотельных лазеров (свидетельства о государственной регистрации программ на ЭВМ № 2019619589 и № 2019619938). Разработанная математическая модель может быть использована при конструировании лазеров с высокоэнергетической широкополосной пиротехнической оптической накачкой в лазерных системах технологического и специального назначения [10].

Литература

1. Поляков В.Е. Лазерная техника и технологии / В.Е. Поляков, А.А. Закутаев, В.В. Широбоков, М.А. Мерзляков // — СПб: ВКА им. А.Ф. Можайского. 2018. 379 с.

2. Борейшо В.А. Военные применения лазеров / В.А. Борейшо, Д.В. Клочков, М.А. Коняев, Е.Н. Никулин // Балт. гос. тех. ун-т. — СПб. 2015. 103 с.

3. Цикулин М.А., Попов Е.Г. Излучательные свойства ударных волн в газах. — М.: Наука. 1977. 133 с.

4. Силин Н.А. Горение металлизированных конденсированных систем / Н.А. Силин, Л.Я. Кашпоров, Л.Я. Нейман. — М.: Машиностроение. 1982. 231 с.

5. Каминский А.А. Новые квазинепрерывные кристаллические лазеры с пиротехнической накачкой / А.А. Каминский, А.И. Бодрецов, А.Г. Петросян // Квантовая электроника. 1983. № 10. С. 1493–1494.

6. Похил А.Ф. Горение порошкообразных металлов в активных средах / А.Ф. Похил, А.Ф Беляев. — М.: перизд. 1993. 31 с.

7. Плассмен И.И. Исследование ракетных двигателей на твердом топливе / И.Плассмен. — М.: Издательство И.Л. Переизд. 1988. 193 с.

8. Мощный оптический квантовый генератор с пиролампой — осветители на основе Y3Al5O12Nd3+ / А.И. Бодрецов, А.И. Каминский // Квантовая электроника. Переизд. 1989. № 2. С. 107–108.

9. Поляков В.Е. Пиротехническая лампа. Патент SU № 1777636А3 от 29.11.1992.

10. Космическое оружие: дилемма безопасности / Под ред. Е.П. Велихова, Р.З. Сагдеева, А.А. Кокошина. — М.: Мир. 1986. 182 с.

67